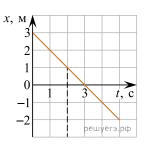
Централизованное тестирование по физике, 2021

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида $(1,4 \pm 0,2)$ Н записывайте следующим образом: 1,40,2.

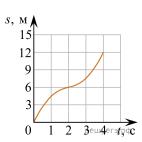
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1) тесла:


2) тонна:

3) метр;

4) диоптрия;


5) секунда.

2. Частица движется вдоль оси Ox. На рисунке изображён график зависимости координаты x частицы от времени t. В момент времени t=2 с проекция скорости v_x частицы на ось Ox равна:

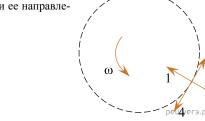
1) 2 m/c; 2) 1 m/c; 3) 0.5 m/c; 4) -0.5 m/c;

3. На рисунке приведён график зависимости пути s, пройденного телом при прямолинейном движении с постоянным ускорением, от времени t. Модуль начальной скорости v_0 тела в момент времени t = 0 с равен:

1) 1 m/c;

2) 3 m/c;

3) 5 m/c;


4) 6 m/c;

5) 7 m/c.

4. Тележка движется по окружности против часовой стрелки с постоянной угловой скоростью о (см. рис.). Установите соответствие между линейной скоростью \vec{v} движения тележки и ее направлением, а также между ускорением \vec{a} тележки и его направлением:

Физическая величина

A) Линейная скорость $\vec{\upsilon}$ движения тележки

1) A154;

Б) Ускорение \vec{a} тележки

2) A3_B1;

3) A3_{B2};

Направление 1 — Стрелка 1

2 — Стрелка 2 3 — Стрелка 3

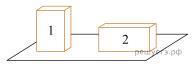
4 — Стрелка 4

4) А2Б1;

5) А4Б1.

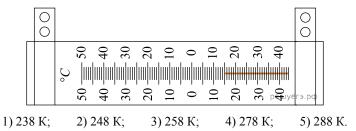
5. Укажите измерительный прибор, в основе принципа действия которого лежит закон всемирного тяготения:

1) линейка;

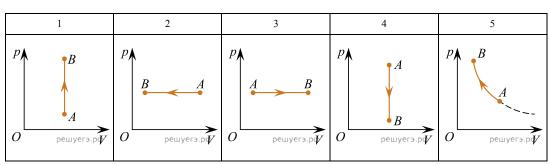

2) радар;

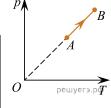
3) жидкостный термометр;

4) пружинные весы;

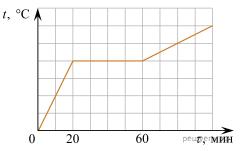

5) манометр на велонасосе.

6. На рисунке изображён брусок, находящийся на горизонтальной поверхности, в двух различных положениях (1 и 2). Выберите вариант ответа с правильным соотношением модулей сил F_1 и F_2 давления бруска на горизонтальную поверхность и давлений p_1 и p_2 бруска на эту же поверхность:

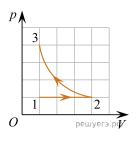



1) $F_1 = F_2, p_1 > p_2$; 2) $F_1 = F_2, p_1 = p_2$; 3) $F_1 = F_2, p_1 < p_2$; 4) $F_1 > F_2, p_1 = p_2$; 5) $F_1 < F_2, p_1 = p_2$.

7. На наружной стороне окна висит термометр, показания которого представлены на рисунке. Абсолютная температура T воздуха за окном равна:


8. С идеальным газом, количество вещества которого постоянно, провели процесс AB, показанный в координатах (p, T). Этот же процесс в координатах (p, V) изображён на графике, обозначенном цифрой:

1) 1; 2) 2; 3) 3; 4)4;5) 5.


9. В момент времени $\tau_0 = 0$ мин вещество, находящееся в твёрдом состоянии, начали нагревать при постоянном давлении, ежесекундно сообщая ему одно и то же количество теплоты. На рисунке показан график зависимости температуры t некоторой массы вещества от времени τ . Установите соответствие между моментом времени и агрегатным состоянием вещества:

Момент времени Агрегатное состояние вещества 1 — твёрдое A) 10 мин 2 — жидкое Б) 50 мин — жидкое и твёрдое

- 1) A1₆2;
- 2) A153;
- 3) А2Б3;
- 4) АЗБ1;
- 5) A3_B2.

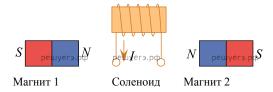
10. Идеальный одноатомный газ, количество вещества которого постоянно, перевели изобарно из состояния 1 в состояние 2, а затем изотермически — из состояния 2 в состояние 3 (см. рис.). Если A_{12} , A_{23} и $\Delta U_{12},\ \Delta U_{23}, \Delta U_{123}$ — это работа газа в процессах $1 \to 2,\ 2 \to 3$ и изменение внутренней энергии газа в процессах $1 \to 2, \ 2 \to 3, \ 1 \to 2 \to 3$ соответственно, то правильными соотношениями являются:

- 1) $A_{12} > 0$; 2) $A_{23} < 0$; 3) $\Delta U_{12} > 0$; 4) $\Delta U_{23} > 0$;
- 5) $\Delta U_{123} = 0$.

11. К источнику тока с ЭДС & и внутренним сопротивлением r подключили резистор сопротивлением R. Если напряжение на резисторе U, то силу тока I в цепи можно рассчитать по формулам, номера которых:

1)
$$U = \left(\frac{\mathscr{E}}{R} - I\right) r$$

3)
$$U = \mathscr{E} - Ir$$
;


4)
$$U = \frac{\mathscr{E}}{R+r}R$$

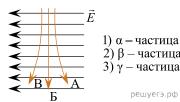
1)
$$U = \left(\frac{\mathscr{E}}{R} - I\right)r;$$
 2) $U = \mathscr{E} - I(R + r);$ 3) $U = \mathscr{E} - Ir;$ 4) $U = \frac{\mathscr{E}}{R + r}R;$ 5) $U = \left(\frac{\mathscr{E}}{r} - I\right)R.$

12. Два одинаковых маленьких металлических шарика подвешены на непроводящих невесомых нерастяжимых нитях равной длины. Первому шарику сообщили положительный заряд $+2q_0$, а второму — положительный заряд $+q_0$. Установившееся положение заряженных шариков изображено на рисунке, обозначенном буквой:

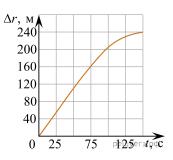
A	Б	В	Γ	Д
рфшуегэ 2 ф	фешуегэ 2 ф		pjewyers2pф	Jemser 5 be
1)	А; 2) Б;	3) B;	4) Γ; 5)	Д.

- 13. Если общее сопротивление двух параллельно соединённых одинаковых резисторов $R_1 = 6$ Ом, то общее сопротивление R_2 этих же резисторов, соединённых последовательно, равно:
 - 1) 0,5 Ом;
- 2) 1,5 Om;
- 3) 3,0 Om;
- 4) 12 Om:
- 5) 24 Om.
- 14. На рисунке изображён соленоид, по обмотке которого протекает постоянный ток в направлении, указанном стрелкой. Вдоль оси соленоида расположены два постоянных магнита. Строка, в которой правильно описано взаимодействие магнитов с соленоидом, обозначена цифрой:

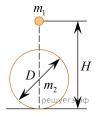
- 1) Магнит 1 притягивается к соленоиду, магнит 2 не взаимодействует с соленоидом.
 - 2) Магнит 1 и магнит 2 отталкиваются от соленоида.
 - 3) Магнит 1 притягивается к соленоиду, магнит 2 отталкивается от соленоида.
 - 4) Магнит 1 и магнит 2 притягиваются к соленоиду.
 - 5) Магнит 1 отталкивается от соленоида, магнит 2 притягивается к соленоиду.
- 15. График магнитного потока Φ через некоторую поверхность от времени t представлен на рисунке. Изменение магнитного потока $\Delta\Phi$ за время $\Delta t = t_2 - t_1$, где $t_1 = 9$ с, $t_2 = 11$ с, равно:



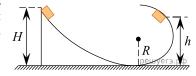
- 1) -5 B6;
- 2) -3 B6;
- 3) -1 B6;
- 5) 5 Вб.
- **16.** В момент времени $t_0 = 0$ с радиовысотомер, установленный на самолёте, излучил в сторону Земли электромагнитный импульс. После отражения от поверхности Земли импульс был принят этим же высотомером в момент времени $t_1 = 1,50$ мкс. Расстояние s от самолёта до Земли равно:
 - 1) 500 m;
- 2) 450 м;
- 3) 300 м;
- 4) 250 m;
- 5) 225 m.
- 17. Если угол между световым лучом, падающим на зеркало, и плоскостью зеркала $\,\alpha = 60^\circ$, то угол отражения этого луча от зеркала равен:


- 1) 120°;
- 2) 80°;
- $3) 60^{\circ}$;
- 4) 30°;
- 5) 10°.

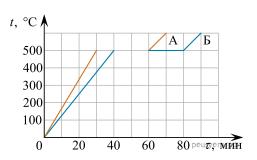
18. $\alpha-$, $\beta-$ и $\gamma-$ частицы, двигаясь в плоскости рисунка, влетели в однородное электростатическое поле \vec{E} (см. рис.). Установите соответствие между траекториями (A, Б, B) и частицами:

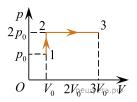


1) A153B2;

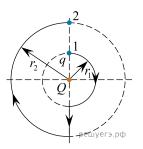

- 2) А2Б1В3;
- 3) A2E3B1;
- 4) A352B2;
- 5) A3E2B1.
- **19.** Тележка движется по прямолинейной траектории. На рисунке представлен график зависимости модуля её перемещения Δr от времени t. Средняя скорость $\langle \upsilon \rangle$ пути тележки за промежуток времени от $t_1=0$ с до $t_1=150$ с равна ... $\frac{\rm дM}{\rm c}$.

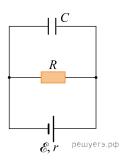
20. Небольшое тело массой $m_1=3.0$ кг движется на высоте H=2.5 м от горизонтальной поверхности. На поверхности лежит однородный шар диаметром D=1.0 м и массой $m_2=1.5$ т. Когда тело будет находиться над центром шара, модуль силы F гравитационного притяжения, действующей на тело со стороны шара, будет равен ... нH.


- **21.** Однородная льдина $\left(\rho_1 = 900 \, \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}\right)$ в форме прямоугольного параллелепипеда толщиной h=16 см плавает в воде $\left(\rho_2 = 1000 \, \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}\right)$. На льдину положили камень $\left(\rho_3 = 2300 \, \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}\right)$ массой m=9,2 кг. Если камень погрузился в воду на половину своего объёма, а льдина погрузилась в воду полностью, то площадь S основания льдины равна ... дм 2 .
- **22.** С высоты H=50 см из состояния покоя маленький брусок начинает соскальзывать по гладкой поверхности, плавно переходящей в полуцилиндр радиусом R=26 см (см. рис.). Если траектория движения бруска лежит в вертикальной плоскости, то высота h, на которой брусок оторвётся от внутренней поверхности полуцилиндра, равна ... см.

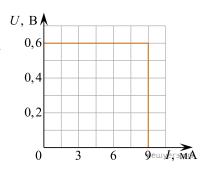

- 23. Зависимость координаты x пружинного маятника, совершающего колебания вдоль горизонтальной оси Ox, от времени t имеет вид $x(t) = A\cos(\omega t + \varphi_0)$, где $\omega = \frac{5\pi}{3} \frac{\mathrm{pag}}{\mathrm{c}}$, $\varphi_0 = \frac{\pi}{3}$ рад. Если полная механическая энергия маятника E = 16 мДж, то в момент времени t = 1,2 с кинетическая энергия E_{κ} маятника равна ... мДж.
- **24.** Велосипедную камеру, из которой был удалён весь воздух, накачивают с помощью насоса. При каждом ходе поршня насос захватывает из атмосферы воздух объёмом $V_0 = 4,7 \cdot 10^{-5} \text{ м}^3$. Чтобы объём воздуха в камере стал равным $V_1 = 2,2 \cdot 10^{-3} \text{ м}^3$, его давление достигло значения $p_1 = 1,54 \cdot 10^5$ Па, поршень должен сделать число N ходов, равное

Примечание. Атмосферное давление $p_0 = 1.0 \cdot 10^5 \, \Pi$ а, изменением температуры воздуха при накачивании камеры пренебречь.

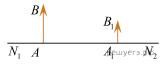

25. Два образца A и Б, изготовленные из одинакового металла, расплавили в печи. Количество теплоты, подводимое к каждому образцу за одну секунду, было одинаково. На рисунке представлены графики зависимости температуры t образцов от времени τ . Если образец A имеет массу $m_{\rm A}=4,5~{\rm Kr}$, то образец Б имеет массу $m_{\rm B}$, равную ... кг.


26. Идеальный одноатомный газ, количество вещества которого постоянно, переводят из начального состояния 1 в конечное состояние 3 (см. рис.). При переходе из начального состояния в конечное газ получил количество теплоты $Q=92~\mathrm{кДж}$. Если объём газа в начальном состоянии $V_0=100~\mathrm{л}$, то давление p газа в конечном состоянии равно ... кПа.

27. На рисунке изображены концентрические окружности радиусами r_1 и r_2 , в центре которых находится неподвижный точечный заряд Q. Точечный заряд q=1,5 нКл перемещали из точки 1 в точку 2 по траектории, показанной на рисунке сплошной жирной линией. Если радиусы окружностей $r_1=2,1$ см и $r_2=4,2$ см, а работа, совершённая электростатическим полем заряда Q, равна A=18 мкДж, то величина заряда Q равна ... нКл.



28. К источнику тока, внутреннее сопротивление которого r=2,0 Ом, подключён резистор сопротивлением R=16 Ом и конденсатор ёмкостью C=5,0 мкФ. Если при постоянной силе тока в резисторе заряд конденсатора $q=2,0\cdot 10^{-4}$ Кл, то ЭДС $\mathscr E$ источника тока равна ... В.



29. В однородном магнитном поле, модуль индукции которого B=0,10 Тл, а линии индукции горизонтальны, «парит» в состоянии покоя металлический стержень с площадью поперечного сечения S=0,10 см 2 . Ось стержня горизонтальна и перпендикулярна линиям магнитной индукции. Если сила тока в стержне I=12 А, то плотность ρ вещества, из которого изготовлен стержень, равна ... $\frac{\Gamma}{\text{CM}^3}$.

30. В идеализированной модели фотоэлемента на фотокатод падает электромагнитное излучение с длиной волны $\lambda=435$ нм постоянной мощностью P. Фотоэлектроны, вырванные под действием этого излучения с поверхности фотокатода, движутся с одинаковой скоростью в направлении анода. На рисунке изображена зависимость напряжения U на фотоэлементе от силы тока I в цепи, полученная после подключения фотоэлемента к реостату и изменения сопротивления реостата от $R_{\min}=0$ Ом до бесконечно большого значения. Если каждый фотон, падающий на фотоэлемент, вырывает один фотоэлектрон, то максимальная доля энергии падающего излучения, превращаемая в электрическую энергию, равна ... %.

31. Стрелка AB высотой H=3,0 см и её изображение A_1B_1 высотой h=2,0 см,формируемое тонкой линзой, перпендикулярны главной оптической оси N_1N_2 линзы (см. рис.). Если расстояние между стрелкой и её изображением $AA_1=7,0$ см, то модуль фокусного расстояния |F| линзы равен ... см.

32. Для исследования лимфотока пациенту ввели препарат, содержащий $N_0=120~000$ ядер радиоактивного изотопа золота $^{133}_{54}$ Хе. Если период полураспада этого изотопа $T_{\frac{1}{2}}=5,5~{
m cyt.}$, то $\Delta N=90000$ ядер $^{133}_{54}$ Хе распадётся за промежуток времени Δt , равный ... сут.